On the Search of Organization Measures for a Kohonen Map Case Study: Speech Signal Recognition
نویسندگان
چکیده
Unsupervised learning scheme like the self-organizing map (SOM) has been used to classify speech sounds in an ordered manner. SOM is able to extract the most salient features of the input signal and provides a simple way of visualizing them. The distance between two units on the map was used as an objective measure of their perceptual similarity. This paper presents a study of the evaluation of a SOM trained by a sequential learning algorithm integrating information enrichment principal. Two complementary analyses are proposed: quantitative analysis and qualitative one. SOM has been used to visualize speech database as a phenotypic map. The latter was used to generate quantitative measures of the input space. In this paper, we propose different organization measures of a Kohonen map. Some of them are restricted to evaluate a map without referring to data manifold. Others are restricted to quantify map organization with respect to data manifold. We propose also how these organization measures act as fitness measures. These organizations measures are evaluated on the case study of phoneme classification of TIMIT acoustic-phonetic continuous speech corpus. The experimental results show that the proposed combined organization measures provide more significant values according to map sizes.
منابع مشابه
A Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JDCTA
دوره 4 شماره
صفحات -
تاریخ انتشار 2010